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Prediction of Shunt Responsiveness in Suspected
PatientsWithNormal PressureHydrocephalusUsing the
Lumbar Infusion Test: A Machine Learning Approach

BACKGROUND: Machine learning (ML) approaches can significantly improve the clas-
sical Rout-based evaluation of the lumbar infusion test (LIT) and the clinical management
of the normal pressure hydrocephalus.
OBJECTIVE: To develop a ML model that accurately identifies patients as candidates for
permanent cerebral spinal fluid shunt implantation using only intracranial pressure and
electrocardiogram signals recorded throughout LIT.
METHODS: This was a single-center cohort study of prospectively collected data of 96
patients who underwent LIT and 5-day external lumbar cerebral spinal fluid drainage
(external lumbar drainage) as a reference diagnostic method. A set of selected 48
intracranial pressure/electrocardiogram complex signal waveform features describing
nonlinear behavior, wavelet transform spectral signatures, or recurrent map patterns
were calculated for each patient. After applying a leave-one-out cross-validation
training–testing split of the data set, we trained and evaluated the performance of
various state-of-the-art ML algorithms.
RESULTS: The highest performing ML algorithmwas the eXtreme Gradient Boosting. This
model showed a good calibration and discrimination on the testing data, with an area
under the receiver operating characteristic curve of 0.891 (accuracy: 82.3%, sensitivity:
86.1%, and specificity: 73.9%) obtained for 8 selected features. Our ML model clearly
outperforms the classical Rout-based manual classification commonly used in clinical
practice with an accuracy of 62.5%.
CONCLUSION: This study successfully used the ML approach to predict the outcome of a
5-day external lumbar drainage and hence which patients are likely to benefit from
permanent shunt implantation. Our automated ML model thus enhances the diagnostic
utility of LIT in management.

KEY WORDS: Normal pressure hydrocephalus, NPH, Lumbar infusion test, LIT, Ventriculoperitoneal shunt, VP
shunt, Machine learning, ICP waveform features

Neurosurgery 00:1–12, 2022 DOI:10.1227/NEU.0000000000001838 www.neurosurgery-online.com

Normal pressure hydrocephalus (NPH) is a
neurodegenerative disease with a steadily
rising prevalence.1 NPH is characterized

by the Hakim triad of urinary incontinence,
dementia, and gait disturbance,2 combined with
ventriculomegaly, but without signs of an ob-
structive hydrocephalus or raised intracranial
pressure (ICP). The classical “textbook” triad is,
however, not always expressed and might be
eclipsed by other comorbidities and signs of the
natural aging process.3

Ventriculoperitoneal (VP) shunt insertion is
the mainstay treatment for NPH 4 because it
frequently halts further functional decline and
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contributed equally to this work.

Correspondence:
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improves quality-of-life outcomes in 70% to 90% of treated
patients.5 NPH diagnosis is based on clinical status, MRI as-
sessment, and evaluation of dynamic cerebral spinal fluid (CSF)
parameters obtained using the lumbar infusion test (LIT), external
lumbar drainage (ELD), or tap test (TT). Despite the progress in
imaging methods, NPH diagnosis remains a challenge. According
to Czepko et al,6 up to 30% of patients meeting MRI criteria for
NPH neither express Hakim triad nor display elevated CSF
outflow resistance. It has been estimated that up to 80% of
patients with NPH go unnoticed and receive inappropriate
medical treatment.5 The sensitivity and specificity of LIT for
NPH diagnosis range between 56% to 100% and 50% to 90%,
respectively.7,8 Yet, it provides a helpful diagnostic tool to unmask
the reduced CSF compliance indicative of NPH.9-12 The tem-
porary ELD, usually maintained for 3 to 5 days, is superior to LIT
for positive predictive value (80%-100%), sensitivity (50%-
100%), and specificity (60%-100%).9 Despite being associated
with significant complications in up to 3% of patients,13 ELD
features the highest prognostic accuracy of shunt responsiveness
prediction and is generally recommended for NPH diagnosis.14

Presently, there is limited literature providing insight into ICP/
CSF factors that predispose individuals toward shunt responsiveness.
Knowledge of new predictive markers could be instrumental in NPH
management. To explore this, we developed machine learning (ML)
algorithms to predict which patients are more likely to experience

clinical improvements after surgery. ML is a rapidly emerging tech-
nique with a well-documented deployment in neurosurgery15-27;
however, the literature regarding the application ofML for diagnostics
and shunt responsiveness in NPH is limited.28-30 Similar to a simple
regression model, an ML algorithm predicts an output, given a set of
inputs. However, the statistical techniques behind generating the
input-based predictions are more complex.
In this study, we analyzed ICP recorded throughout LIT and

extracted numerous signal features of the waveform, rather than
reducing the LIT outcome to one number (Rout) as is usually
performed in practice. We then developed ML algorithms with
the ability to reveal complex relations between the ICP signal
features and ELD outcomes to predict which patient is more likely
to respond to CSF drainage.

METHODS

IRB Statement and Guidelines
The study was conducted in accordance with the rules and regulations

of our institution, as approved by the institutional ethics board. All
patients signed informed consent forms before the procedures. The
Transparent Reporting of Multivariable Prediction Models for Individual
Prognosis or Diagnosis checklist31 and guidelines for ML predictive
models32 were followed in our study.

FIGURE 1. A, The patient selection flowchart. B, Study design. ELD was used as the decisive method to classify patients as NPH (ELD+) and non-NPH (ELD�). LOOCV
method of ML training process. ELD, external lumbar drainage; LOOCV, leave-one-out cross-validation; ML, machine learning, NPH, normal pressure hydrocephalus.
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Design and Cohort Selection
In this single-center prospective consecutive cohort study, 198 patients

with suspected NPH were referred to the Department of Neurosurgery
and Neuro-oncology of the Military University Hospital in Prague be-
tween 2016 and 2021 (Figure 1A). Thirty-seven patients were excluded at
the outpatient clinic because of the absence of clinical or radiological
criteria for possible idiopathic NPH,33,34 and 13 patients were excluded

because of the contraindications for general anesthesia or VP shunt
surgery. The remaining 148 patients were hospitalized for further di-
agnostic testing. All patients underwent standardized MRI and were
examined by a neurologist and neuropsychologist. Twenty-one patients
were excluded because of the diagnosis of another neurodegenerative
disease or secondary NPH (sNPH): 5 patients with Alzheimer dementia,
2 patients with Parkinson disease, and 14 patients with sNPH. Another 5

TABLE 1. Description of the LIT Phases I-III

Phase Infusion pump Mean length Mean ICP trend Motive

I Off 01:41 Steady Equilibration of the ICP waveform, offset level
II On (1.5 mL�min�1) 16:21 Increase Main phase, testing of CSF absorptive capacity
III Off 04:46 Decrease Testing of the recovery rate

CSF, cerebral spinal fluid; ICP, intracranial pressure; LIT, lumbar infusion test.
The mean phase lengths are in minutes.

FIGURE 2. Illustration of the LIT setup. Saline is administered by an infusion pump at a constant rate of 1.5 mL�min�1 into the subarachnoid space (blue arrows). The needle is
connected through a fluid-filled tubing system and a 3-way stop cock to a disposable pressure transducer. The transducer is electrically connected to a bedside monitor (green curve),
which displays ICP (green) and ECG (red) on-screen and simultaneously relays the analog data through ADC to a computer (gray analog and digital signal). ECG,
electrocardiogram; ICP, intracranial pressure; LIT, lumbar infusion test. ADC, analog-to-digital converter.
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FIGURE 3. A, Illustration of LIT recording, color boxes indicate LIT phases. B-D, Details of the ICP inset: B,
ICP; C, dICP; andD, ECG. Red dashed vertical lines symbolize the R-wave time locking procedure used in the
calculation of features F43-F48. E and F, Example of ICP recurrent maps calculated from 2 NPH and 2 non-
NPH patients, respectively. The recurrent map matrices serve as an input for RQA-based computation of features
F29-F40.G, Illustration of mean CWT spectra for NPH (blue) and non-NPH (orange) patients used in features
F22-F28. CWT, continuous wavelet transform; dICP, intracranial pressure time derivative; ECG, electrocardiogram;
ICP, intracranial pressure; NPH, normal pressure hydrocephalus; RQA, recurrence quantification analysis.
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patients were diagnosed with obstruction or stenosis in the CSF
pathway and underwent endoscopic third ventriculostomy. Gait was
evaluated from a video recording using the Dutch Gait scale.35,36

Twenty-six patients were excluded because of the lack of LIT or
insufficient ICP recording length or quality (eg, premature termi-
nation, poor-quality recording in agitated patients, or missing elec-
trocardiogram [ECG]). The final study group included 96 patients
labeled “possible NPH.” All patients with possible NPH had ven-
triculomegaly (Evans index >0.3) and normal CSF opening pressure.37

The patients with possible NPH were further classified as NPH (46)
and non-NPH (50) according to ELD outcomes (Figure 1B). The
NPH group thus consists of patients with possible NPH with positive
ELD (ELD+), and the non-NPH group consists of patients with
possible NPH with negative ELD (ELD�). All patients in the NPH
group underwent VP shunt implantation. Clinical outcome was as-
sessed at 3 months and for those admitted before March 2020 again at
1 year. Non-NPH patients were referred for further neurological care.
The selection for shunt implantation was based on the available
guidelines.33,37 The tap test or presence of disproportionately en-
larged subarachnoid space on MRI (aka DESH; tight, high-convexity,
and medial subarachnoid spaces and enlarged Sylvian fissures with
ventriculomegaly) with typical gait symptoms was not considered for
shunt implantation decision.38

Lumbar Infusion Test and External Lumbar
Drainage Protocol

The LIT protocol consisted of 3 phases (Table 1 and Figure 2). A
common LIT measure used to determine shunt responsiveness is resis-
tance to CSF outflow (Rout; mm Hg�mL�1�min)39 calculated as the
pressure gradient divided by the infusion rate (1.5 mL�min�1).40 The
Rout ≥12 mm Hg�mL�1�min was used to label the patients as LIT
positive.41 ECG was synchronously recorded for time-locking ICP
segmentation only. ELD was inserted immediately after the LIT and left
in place for 5 days after which ELD response was assessed. For detailed
information on LIT and ELD protocols, see Supplementary Information,
http://links.lww.com/NEU/B16.

ICP Feature Extractions
The extraction of ICP signal features (Figure 3) aims to uncover

waveform patterns that might be specific for either of the NPH or non-
NPH groups. The calculated 48 features are clustered into 7 classes
depending on their nature: temporal dynamics (F01-F11), integral
(F12-F13), nonlinear (F14-F21),42-45 continuous wavelet transform
(CWT; F22-F28), recurrence quantification analysis (RQA; F29-F40),46

heart rate (HR; F41-F42), and ECG locking (F43-F48). For further
description of calculated features, see Supplementary Information,
http://links.lww.com/NEU/B16.

Classification Model Training and Performance Evaluation
The following ML algorithms were trained on a training set using

the leave-one-out cross-validation method: random forest, logistic
regression, Gaussian Naive Bayes, support vector model, adaptive
boosting, extra-trees, gradient boosting, and eXtreme gradient
boosting (XGBoost). The listed algorithms are implemented in the
Scikit-Learn Python library.47 Accuracy, sensitivity, specificity, re-
ceiver operating characteristic (ROC), and area under the ROC curve
(area under the curve[AUC]) were used to compare the performance
of all ML methods. For detailed information on ML models
construction and cross-validation, see Supplementary Information,
http://links.lww.com/NEU/B16.

RESULTS

Baseline Patient Data
Table 2 summarizes the baseline characteristics of the overall

data. The average age of the cohort was 73.7 years. Sixty-eight
percent of patients were male. Of 46 patients with NPH, 29
(63%) and 17 (37%) had positive and negative LIT, respec-
tively. The complete Hakim triad was expressed in 36 patients
with NPH (78%). In the non-NPH group, 28 patients (56%)
showed the complete triad. Gait disorder as classified by
the Dutch Gait Scale35 was the most common of the triad

TABLE 2. Baseline Characteristics of NPH-Suspected Patients, n = 96

Class Variable NPH Non-NPH Total P-value

General Number of patients 46 (48) 50 (52) 96 (100) NA
Sex (M/F) 30/16 (65/35) 35/15 (70/30) 65/31 (68/32) .666
Age (y) 73.5 ± 4.7 73.9 ± 8.6 73.7 ± 6.9 .803
CCI 5.8 ± 1.8 5.8 ± 2.0 5.8 ± 1.9 .935

LIT Positive/negative 29/17 (63/37) 19/31 (38/62) 48/48 (50/50) .024
Mean phase duration (I/II/III) (min) 01:46/16:13/04:35 01:36/16:28/04:56 01:41/16:21/04:46 .284/.587/.214

Hakim triads Gait impairment (y/n/NA) 46/0/0 (100/0/0) 48/1/1 (96/2/2) 94/1/1 (98/1/1) 1.000
Incontinence (y/n/NA) 39/7/0 (85/15/0) 31/18/1 (62/36/2) 70/25/1 (73/26/1) .021
Dementia (y/n/NA) 43/3/0 (93/7/0) 42/7/1 (84/14/2) 85/10/1 (89/10/1) .319
Patients with 3/2/1/0 signs 36/10/0/0 (78/22/0/0) 28/17/3/2 (56/34/6/4) 64/27/3/2 (67/28/3/2) .055a

Postshunt improvement Follow-up: 3 mo (y/n/NA) 33/8/5 (80/20) NA NA NA
Follow-up: 1 y (y/n/NA) 18/6/22 (75/25) NA NA NA

CCI, Charlson Comorbidity Index; ELD, external lumbar drainage; NA, not applicable or available; NPH, normal pressure hydrocephalus.
aFreeman–Halton extension of the Fisher exact test for a 4-column contingency table was used.
Numbers in parentheses are in %. The follow-up relative numbers are calculated excluding NA. P-values for continuous and binary/count data were calculated by the t-test and
Fisher exact test, respectively.
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TABLE 3. Features Ranked According to Their Class and Feature Importance

Feature class ID

NPH Non-NPH

P-Value FI Feature descriptionMean SD Mean SD

Temporal dynamics 01 20.9 7.3 14.9 5.4 1.41e-5 62 Q0.99(ICP) � Q0.01(ICP); fICP
02 17.7 6.7 13.0 4.6 1.32e-4 26 Mean (ICP(L_30s)) � mean (ICP(F_30s)); fICP
03 3.23 1.21 2.68 1.16 2.65e-2 10 SD (ICP); rICP-fICP
04 1.22 0.63 0.83 0.29 1.83e-4 9 Mean (1 min ΔICP increments); fICP
05 18.1 6.7 13.7 4.8 3.14e-4 8 Mean (ICP(L_60s)); fICP
06 �2.42 1.15 �1.65 0.71 1.75e-4 6 Secant slope (ICP); LIT phase III.; fICP
07 1.43 0.72 1.02 0.55 1.85e-3 2 SD (1 min ΔICP increments); fICP
08 1.16 0.52 0.82 0.29 1.59e-4 2 Secant slope (ICP); fICP
09 12.5 3.8 11.2 3.5 9.20e-2 1 Mean (ICP); LIT phase I; fICP
10 8.57 3.29 6.92 3.23 1.50e-2 1 Q0.99 (ICP); rICP-fICP
11 27.8 9.1 21.1 7.3 1.30e-4 0 Q0.99 (ICP) � Q0.01(ICP); rICP

Integral 12 1.84e+3 2.80e+3 2.54e+3 4.38e+3 3.55e-1 33 Normalized AUC; rICP-fICP
13 1.38e+6 3.51e+5 1.15e+6 3.26e+5 9.73e-4 4 Normalized AUC; fICP

Nonlinear 14 �4.07e+7 3.78e+7 �2.96e+7 3.47e+7 1.36e-1 46 En(ICP); rICP-fICP
15 �7.16e+3 3.91e+3 �4.27e+3 2.48e+3 3.39e-5 12 En(ICP(L_120s)); fICP
16 6.73 0.57 6.26 0.63 2.40e-4 4 LogEn(ICP(L_120s)); fICP
17 1.78 0.12 1.85 0.08 1.11e-3 2 HFD(ICP(L_120s)); fICP
18 �0.16 0.13 �0.08 0.09 2.64e-3 2 HFD(ICP(L_120s)) � HFD (ICP(F_120s)); fICP
19 1.93 0.08 1.93 0.08 9.76e-1 1 HFD(ICP(F_120s)); fICP
20 �1.15e+3 8.06e+2 �8.45e+2 5.12e+2 2.70e-2 1 En(ICP(F_120s)); fICP
21 5.13 0.63 4.85 0.73 5.01e-2 0 LogEn(ICP(F_120s)); fICP

CWT-based 22 0.03 0.01 0.03 0.01 4.11e-2 51 Mean, (CWT power in 0.18-0.62 Hz); rICP
23 0.05 0.01 0.05 0.01 9.94e-2 15 Mean, (CWT power in 0.05-0.18 Hz); rICP
24 0.57 0.27 0.42 0.17 2.25e-3 2 Mean, (CWT power in 1.92-10.00 Hz); rICP
25 0.03 0.01 0.03 0.01 1.60e-2 0 Mean, (CWT power in 0.62-1.92 Hz); rICP
26 0.40 0.12 0.42 0.12 4.38e-1 0 Pos(max(CWT in 0.18-0.62 Hz)); rICP
27 1.83 0.26 1.79 0.38 5.27e-1 0 Pos(max(CWT in 0.62-1.92 Hz)); rICP
28 9.40 1.54 9.77 1.33 2.12e-1 0 Pos(max(CWT in 1.92-10.00 Hz)); rICP

RQA 29 98.9 0.67 99.2 0.41 1.33e-1 31 DET(R(F_30s)); rICP
30 99.1 0.7 99.4 0.3 4.57e-3 23 DET(R(L_30s)); rICP
31 20.4 4.0 22.3 3.9 1.57e-2 19 TT(R(L_30s)); rICP
32 5.25 0.63 5.47 0.39 4.05e-2 12 En(R(F_30s)); rICP
33 5.06 0.63 5.31 0.42 2.66e-2 7 En(R(mean(A_30s))); rICP
34 99.8 0.2 99.8 0.1 1.30e-2 7 LAM(R(mean(A_30s))); rICP
35 99.6 0.4 99.7 0.3 2.55e-1 6 LAM(R(F_30s)); rICP
36 99.8 0.2 99.9 0.1 2.71e-2 6 LAM(R(L_30s)); rICP
37 22.0 4.5 23.5 4.2 7.64e-2 3 TT(R(mean(A_30s))); rICP
38 24.1 8.6 25.9 10.3 3.70e-1 2 TT(R(F_30s)); rICP
39 4.93 0.69 5.18 0.51 4.58e-2 1 En(R(L_30s)); rICP
40 99.1 0.6 99.3 0.3 6.94e-3 1 DET (R(mean(A_30s))); rICP

Heart rate 41 76.6 9.5 69.6 10.2 2.49e-2 2 Mean (HR); (ECG)
42 77.0 9.1 69.8 10.7 2.26e-2 0 Median (HR); (ECG)

ECG locking–based 43 232 49 263 65 8.38e-2 14 Pos(max(dICP(F_200ms))); rICP
44 373 70 401 74 1.99e-1 0 Pos(max(ICP(F_200ms))); rICP
45 227 49 262 62 4.25e-2 0 Pos (max(dICP(F_500ms))); rICP
46 230 94 249 60 4.38e-1 0 Pos (max, (dICP(L_500ms))); rICP
47 0.30 0.13 0.18 0.07 5.35e-4 0 Pos (max(ICP(L_200ms))); rICP
48 �0.04 0.21 �0.09 0.24 5.19e-1 0 Skew (dICP(L_200ms))–skew(dICP(F_200ms)); rICP

AUC, area under the curve; CWT, continuous wavelet transform; DET, determinism; dICP, ICP time derivative; EN, entropy; FI, XGBoost classifier feature importance; fICP, rICP signal
smoothed using moving median filter with the window size of 30s; HFD, Higuchi fractal dimension; LAM, laminarity; LogEn, log energy entropy; max, maximum; min, minimum; pos,
position of max/min on the time or frequency axis; Q, quantile; R, recurrent map; rICP, raw ICP filtered with the Hampel filter; rICP-fICP, filtered signal subtracted from the raw signal
(offset removal); RQA, recurrence quantification analysis; SD, standard deviation; skew, skewness; TT, trapping time.
Interval of the input vector/array is tagged as X and _Y, where X = F, first; L, last, A, all segments and Y = time (eg, F_60s refers to the first 60 s of the respective variable, A_30s stands
for all 30 s segments). Except for F06 and F09 calculated for LIT phases III and I, respectively, all features were computed using LIT phase II. ICP/ECG. Bold indicates 8 features with the
highest FI. For detailed feature description, see Supplementary Information, http://links.lww.com/NEU/B16.
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signs seen in nearly all patients. The incidence of urinary
incontinence was the lowest. There were no significant dif-
ferences in sex, age, and number of patients between the NPH
and non-NPH groups (Table 2).
The 3-month follow-up of the shunted patients revealed im-

provement in 80% and no significant amelioration in 20%; 5
patients were not examined.

Feature Selection
Table 3 summarizes the results of the computed ICP/ECG

features F01-F48 that were ultimately used to develop ML models.
For detailed information on the features, see Supplementary In-
formation, http://links.lww.com/NEU/B16.

Model Performance
Table 4 compares accuracies (Figure 4), AUCs, sensitivities,

and specificities for all ML algorithms developed. From these
algorithms, the XGBoost classifier showed the best discrimination
potential, with 80.2% accuracy, 0.887 AUC, 86.0% sensitivity,
and 73.9% specificity when all 48 features are considered. The
manual Rout-based classification displays significantly lower
concordance with ELD outcomes with accuracy, sensitivity, and
specificity of 62.5%, 62.0%, and 63.0%, respectively. Because of
its superior discrimination, balanced accuracy, and the ability to
reveal complex feature dependencies, the XGBoost classifier was
selected for calibration and further testing. Figure 5 shows the
detailed performance of the XGBoost classifier. For AUC (0.891),
accuracy (82.3%), and sensitivity (86.1%), the highest predictive

TABLE 4. Comparison of the AUCs, Accuracies, Sensitivities, and Specificities of Tested ML Models

Model AUC Accuracy (%) Sensitivity (%) Specificity (%)

Manual Rout-based NA 62.5 62.0 63.0
RF 0.707 68.8 72.0 63.0
LogReg 0.711 70.8 80.0 60.9
GaussNB 0.688 71.6 84.0 52.2
SVM 0.728 71.9 86.0 56.5
AdaBoost 0.707 75.0 84.0 65.2
ExtraTrees 0.817 76.0 82.0 69.6
GradientBoost 0.895 79.2 86.0 71.7
XGBoost 0.887/0.891 (8) 80.2/82.3 (8) 86.0/86.1 (8) 73.9/78.3 (7)

AUC, area under the curve; AdaBoost, adaptive boosting; ExtraTrees, extra-trees; GaussNB, Gaussian Naive Bayes; GradientBoost, gradient boosting; LogReg, logistic regression; ML,
machine learning; NA, not available; RF, random forest; SVM, support vector model; XGBoost, eXtreme gradient boosting.
In XGBoost X/Y (Z): X refers to the performance obtained for all 48 features, Y represents the highest performance obtained for optimal number of features, and Z is the optimal
feature number.

FIGURE 4. Tested classification models. The best performance for accuracy (%) is obtained by the XGBoost technique. The red dashed line symbolizes the accuracy of the manual
Rout-based classification. In training of ML models, the same set of 48 features were used. ML, machine learning; XGBoost, eXtreme gradient boosting.
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potential was obtained for 8 features (Figure 5A and 5B). The
highest specificity (78.3%) was achieved with 7 features (Figure
5C). Figure 5D shows the XGBoost model ROC curve when 1, 8,
or all 48 features are considered. The feature importance (Figure
5E) indicates the most seminal predictors for NPH/non-NPH
discrimination, with relative importance ranking based on usage
frequency in the model. The distribution of the 8 most important
predictive factors (F01, 22, 14, 12, 29, 2, 30, and 31; Table 3) in
NPH and non-NPH cohorts is shown in Figure 6. The calibration

curve (Figure 5F) demonstrates good concordance between the
estimated and observed probabilities.

DISCUSSION

ICP waveform exhibits complex time-domain and frequency-
domain motifs, knowledge of which may support clinical decision
making. Although fundamental, the feature selection is of limited
value when the features are used separately. Unsurprisingly, the

FIGURE 5. XGBoost model performance. A-C, Red dashed lines symbolize the performance of Rout-based manual classification.
D, ROC curves for 1, 8, and 48 features. E, Ranking the calculated features according to their importance in the model. F,
Calibration curve of the XGBoost model. The gray dashed line denotes ideal calibration. XGBoost, eXtreme gradient boosting,
ROC, receiver operating characteristic.
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principal feature with the highest FI is F01 (Figure 5), the ICP
elevation in the phase II, which is basically the unscaled Rout value.
F01 is significantly higher in patients with NPH (P = 1.4e-5, FI =
62, Table 3 and Figure 6), in line with the original principle of LIT.
The accuracy of a potential 1-feature–based classification model
(<60%, Figure 5) is slightly lower than the manual Rout method.
This discrepancy is because the examining physician takes into
account the ICP artifacts precipitated by the patient’s movement,
cough, etc. in the LIT evaluation while the ML model lacks this
information. The remaining features F02-F48 exhibit 2 phenom-
enas. First, they are difficult to interpret because they lack a clear
clinical correlate, and their physiological explanation is rather
speculative or under further investigation. Second, FI values do not
necessarily correlate with the P-values. Features that would have
been ignored in standard statistical testing as insignificant for NPH/

non-NPH discrimination may turn out to be seminal for the ML
model and vice versa (Figure 6). While the second most used feature
F22, a mean CWT spectral power within the range of 0.18–0.62Hz
(P = 4.1e-2, FI = 51), is borderline from this perspective, the third
and fourth most important features F14, the entropy of the rICP-
fICP difference (FI = 46, P = 1.4e-1), and F12, the integral of the
normalized ICP curve (FI = 33, P = 3.6e-1), would be rejected by the
significance testing. Despite being often unexplainable, the addi-
tional features F02-F48 boost our XGBoost model to enhance the
prediction accuracy by ∼25% compared with the F01-only pre-
dictor and by ∼20% compared with the actual Rout-based manual
evaluation. This finding illustrates the greatest asset of the ML
algorithms—the ability to explore complex multidimensional fea-
ture space and reveal clinically exploitable information hidden
within, unreachable through common statistical techniques.

FIGURE 6. A-H, Distribution of the 8 most used XGBoost features in NPH (=ELD+, blue) and non-NPH (=ELD�, orange) cohorts ranked according to the FI metric. ELD,
external lumbar drainage; NPH, normal pressure hydrocephalus; XGBoost, eXtreme gradient boosting.
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Clearly, ML-based evaluation of LIT cannot, at least for now,
replace ELD completely. Still, an in-depth LIT ICP analysis may
reveal a subset of patients who could be indicated for permanent
CSF drainage. The benefit of our ML model is illustrated in
Figure 7. Although patients P1-P2 show an easy-to-recognize ICP
elevation typical for non-NPH and NPH diagnosis, patients P3-
P4 represent the gray zone patients. Because Rout of P3 and P4 was
13.8 and 7.3 mm Hg�mL�1�min, respectively, P3 was labeled
LIT+ and P4 LIT�. Patient P4, however, turned out to be ELD+
and improved significantly on VP shunt insertion. Patient P3 did

not show any clinical amelioration throughout ELD. Unlike the
Rout-based assessment that failed for P3-P4, our ML model
correctly predicted the ELD outcome in all patients (P1-P4).

Limitations
There are several limitations to the work presented in this

study, with the selection bias being the most significant one. First,
before referral for functional testing, patients are selected based on
clinical and radiological criteria.37 This selection process pre-
maturely screens out potential ELD+ patients who would benefit
from CSF diversion. Second, for a definite NPH diagnosis, shunt
response must be observed.37 Yet, ELD remains the most prag-
matic test available for selecting patients for shunt insertion.48,49

Because the specificity of ELD is generally below 100%,9 a
fraction of ELD+ patients do not show postsurgery improvement.
In this study, clinical improvement at 3 and 12 months was 80%
and 75% (Table 2), respectively, which is in accordance with
reported data.49 Variability of the reported values could be ex-
plained by nonidentical improvement cutoffs and different shunt
indication criteria being used throughout different centers.9

Similarly, subtotal sensitivity of ELD causes that an unknown
number of ELD� patients who might have benefited from
shunting are classified as non-NPH and as such do not undergo
surgery. Because of the aforementioned, choosing ELD as the
ultimate NPH test unavoidably leads to an inherent selection bias.
Being aware of the bias, we have opted for the most pragmatic
method of functional NPH diagnostics based on ELD response,
and thus, we have performed shunt implantation only in patients
showing significant post-ELD improvement. Functional testing
before shunt implantation is recognized in many studies9,14 and
guidelines37 and has a long tradition at our institution. If we
shift our threshold for improvement after ELD to lower limits,
it would inevitably lead to unnecessary surgeries in a number of
patients. From this point of view, it is rather an ethical question
of whether to implant a shunt system in borderline patients.
Finally, patients present in various stages of the disease with
frequent comorbidities that potentially influence the outcome
of the functional testing.50,51

The abovementioned factors thus compromise the process of
NPH/non-NPH classification, with no ultimate solution in sight.
Our ML models were optimized for highly accurate prediction
rather than explanation, and model parameters thus cannot be
simply deployed for the purpose of explaining the effect of in-
dividual features on the shunt responsiveness. Finally, although
the model performed well throughout the leave-one-out cross-
validation, a technique proven to be useful for assessing model
effectiveness,52-54 further external validation is under way in
multiple neurosurgical centers.

CONCLUSION

ML algorithms are a promising tool for prediction of post-
operative outcomes, and these algorithms can be integrated into

FIGURE 7. LIT ICP of 4 selected patients A-D, P1-P4, non-NPH (orange; A,
P1 andC, P3), and NPH (blue; B, P2 andD, P4). While A, P1 and B, P2 are
representatives of patients where the manual Rout-based classification correctly
discriminates between NPH and non-NPH, C, P3 and D, P4 illustrate those
gray zone patients in which Rout-based classification fails. Specifically, Rout ofC,
P3 andD, P4 is 13.8 and 7.3 mm Hg�mL�1�min, respectively, assigning them
to the opposite class. A-D, All P1-P4 patients were classified in accordance with
ELD using our XGBoost ML model. ELD, external lumbar drainage; ML,
machine learning; NPH, normal pressure hydrocephalus; XGBoost, eXtreme
gradient boosting.
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clinical management. We retrospectively applied automated ML
to predict ELD and permanent shunt implantation response in
patients who underwent LIT. A XGBoost model had the best
performance and showed outstanding discrimination and cali-
bration on our data set. Our developed classifier may be a con-
siderable asset in LIT evaluation and in identifying patients with
NPH who benefit from surgical intervention. Multicentric vali-
dation of our ML model has been initiated.
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COMMENT

T his interesting study used a ML protocol to attempt to improve the
selection of patients for VP shunting for normal pressure hydro-

cephalus. The results suggest that the XGBoost algorithm can predict the
outcome of a prolonged external drainage trial and thus those patients
who should respond favorably to creation of a permanent shunt. The
automated ML protocol also improves the value of the LIT for this
purpose. The notion of applying mathematical rigor to the diagnosis and
treatment of neurological disease is extremely attractive. These results are
an encouraging step that suggests that this goal may be achievable. Still,
the authors did not end up shunting all patients who had at least some
clinical indicators of NPH based on ML criteria. There are likely patients
in this group who would have benefited from shunting, but the decision
to do so is often a subjective one. Further still, time will tell whether the
durability of these results will be superior to other selection methods.

Joel D. MacDonald
Salt Lake City, Utah, USA
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