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INTRODUCTION
Experimental studies indicate that Status epilepticus (SE) causes neurodegenerative changes in the hippocampus, limbic structures, thalamus and neocortical
areas. However, basal ganglia (BG) are rarely mentioned. Several clinical studies have reported brain abnormalities (atrophy, metabolic changes) in structures
remote from the seizure focus as well as in BG.

AIM OF THE STUDY
To obtain new data on the extent of neuronal degeneration in Dorsal striatum (DS) during development after the SE. 

MATERIALS & METHODS
Lithium pilocarpine model of SE:  Wistar pups 12, 15, 18, 21 and 25 days old. 

• Seizure induced: 3 mmol/kg, i.p. LiCl were injected 24 hours before 40 mg/kg,i.p. pilocarpine. 2 hours after the SE, motor seizures were suppressed 
with 0.3-0.6 ml/kg i.p. paraldehyde. 

• Survival intervals: 4, 8, 12, 24, 48 h, 1 week post SE. 3-4 rats per age and interval group. 
• Anesthesia: 2.5 g/kg, i.p. urethane and perfused with PBS followed by 4% paraformaldehyde in 0.1 M phosphate buffer, pH 7.4. 
• Sections preparation: Brains were sectioned into 50 μm. FJB-labeled degenerated neurons were plotted to standard stereotaxic sections. 

*Animal care and experimental procedures were conducted in accordance with the guidelines of The European Community Council directives 86/609 EEC. 

RESULTS & DISSCUSSION

CONCLUSION
SE induced hyperactivity of the corticostriatal and amygdalostriatal glutamatergic projections together with postnatal development of striatal synapses may 
result in excessive glutamate release and in development of excitotoxic damage of striatal neurons. 

• Neuronal degeneration within the DS could be explained by the hyperactivity in afferent systems.
• Degenerating neurons in the rostral half of the DS overlap with corticostriatal projections from: parietal cortex, orbital area, MI area, premotor area, and
visual association area.
• In the caudal half of the DS overlap with corticostriatal projections from the auditory area with amygdalostriatal projections was evident.

• In P12 and P15 rats only isolated degenerated neurons were found at interval 24 and 48 hours in the rostral half of the DS.

• In P18, P21 and P24 degeneration of striatal neurons was consistently observed.

• At intervals up to 24 hours post SE, FJB-positive neurons exhibited intense staining of the cell body.

• At longer intervals (48 hours, 1 week) some of positive neurons were shrunken and less intensely stained and surrounded by

background of disintegrated fibers.

• Severity of damage reached a peak at 24 and 48 hours post SE.
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