Pediatric Acquired Demyelinating Disorders

ADEM and MS

26.3.2013

Katerina Paderova M.D.
ADEM - Acute Disseminated Encephalomyelitis Syndrome

- Immune mediated disease of the CNS - involvement of white matter
- Form of neuroallergy
- It occurs following infection or vaccination
- Autoimmune demyelination - multiple inflammatory lesions in the brain and spinal cord
ADEM - Epidemiology

- Incidence 1,5 - 3:100 000
- More frequent in children and adolescents
- Gender: predominance in boys
- Worldwide in all races
- Seasonal incidence in winter from October to March
ADEM – Causes and Antecedent History

- Infections thought to induce ADEM:
 - **Viral:**
 - HSV, EBV, CMV, HHV6, Hepatitis A, B
 - Varicella, Influenza, Coxsackie, Measles,
 - Smallpox
 - **Bacterial:**
 - Streptococci, Salmonella, Chlamydia, Borrelia, Legionella, Mycoplasma Leptospira
 - **Vaccination** with risk of ADEM onset:
 - Rabies, Influenza, Rubella, Measles, BCG, Meningitis A+C
 - Hepatitis A+B, Diphtheria, Tetanus, Pertussis
ADEM - Pathogenesis

- No evidence of infectious agent in the CNS tissue
- Immune reaction mediated by autoreactive T lymphocytes against MBP, PLP
- Molecular mimicry
- Polyclonal activation of T cells by superantigens
- Inhibition of suppressor T cells
- Direct destruction of oligodendrocytes
- Genetic susceptibility
ADEM- Histopathological Changes

- Similar to experimental allergic encephalomyelitis (an animal model)

- Perivenous demyelination foci, infiltration of lymphocytes and macrophages, hyperemia, perivascular edema, hemorrhage

- Changes along the small blood vessels in the white and gray matter (BG, thalamus, cortex)

- Recovery — glial and fibrotic scars
ADEM - Clinical Manifestations

- **Prodromal symptoms** 1-2 weeks after infection:
 Fever, headache, vomiting, meningismus, somnolence

- **Neurological symptoms:**
 Encephalopathy: irritation, lethargy, altered consciousness, epileptic seizures
 Dysphasia, hemiparesis
 Ataxia, tremor, nystagmus
 Optic neuritis
 Facial palsy
 Transverse myelitis

- **Atypical variations**: subclinical × fulminant
ADEM - Paraclinical Examinations I

- Elevation of **inflammatory markers** FW, CRP, leucocytes
- EEG diffuse slow activity, focal epileptiform activity
- CSF normal or protein - cytological association
elevated IgG index, rarely oligoclonal bands
ADEM - Paraclinical Examinations II

- Abnormal brain MR demonstrating:
 - multiple lesions in the cerebral white matter
 - larger than 1-2 cm, diffuse poorly demarcated
 - number, location and size are variable, but same age (x MS)
 - Brainstem, cerebellum, subcortical
 - In grey matter: thalamus, BG (x MS)
 - T2W hyperintense, few or no T1 hypointense (x MS)
 - No new clinical and MRI findings emerge 3 months or more after onset

 (x MS: DIT + DIS)
ADEM – MRI

Diffuse poorly demarcated large lesions involving cerebral white matter with hemorrhagic component
ADEM - Clinical Forms

- **Monophasic event**

 Acute demyelinating (ADEM)
 Acute hemorrhagic leukoencephalitis (AHLE) 2%

- **Multiphasic event** 1- 4% (MDEM)
 Often relapses after quick withdrawal of corticosteroids
ADEM - Differential Diagnosis

- Multiple Sclerosis
- Acute viral encephalitis (HSE)
- CNS vasculitis
- Tumor, CNS lymphomas
- Leukodystrophy, mitochondrial encephalopathy
- Progressive multifocal leukoencephalopathy (HIV)
- Systemic lupus erythematosus
- Neurosarcoidosis
Differentiation ADEM x MS

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>ADEM%</th>
<th>MS%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger factors</td>
<td>74</td>
<td>38</td>
</tr>
<tr>
<td>Polyfocal signs</td>
<td>91</td>
<td>38</td>
</tr>
<tr>
<td>Encephalopathy</td>
<td>69</td>
<td>15</td>
</tr>
<tr>
<td>Epileptic seizure</td>
<td>17</td>
<td>5</td>
</tr>
<tr>
<td>Leucocytosis</td>
<td>64</td>
<td>22</td>
</tr>
<tr>
<td>Pleocytosis</td>
<td>64</td>
<td>42</td>
</tr>
<tr>
<td>Elevated CSF protein</td>
<td>60</td>
<td>33</td>
</tr>
<tr>
<td>Oligoclonal bands</td>
<td>29</td>
<td>64</td>
</tr>
<tr>
<td>PV lesions on MRI</td>
<td>44</td>
<td>92</td>
</tr>
</tbody>
</table>
ADEM - Therapies

- Aggressive treatment !! Evidence to favorable outcomes !
- **Corticosteroids** pulse therapy 10 - 20mg/kg/dose 3 - 5 days followed by short taper

- **Immunoglobulins** 0.4g/kg daily - 5 days
- Symptomatic therapy (AED, antiedematous, anti-infective)

- **Plasma exchange** - fulminant cases

- ICU monitoring, nursing
- Psychotherapy, physiotherapy
ADEM Case Report Joseph *2003

Vaccination TetraHib 15.12.2008 (DiTePe + H.influenzae)

19.12.2008 **Gastroenteritis**

29.12.2008 Generalised epileptic seizure

 Paraparesis, urinary retention

Transport to the Dpt. of Child Neurology Motol
ADEM Case Report Joseph *2003

- **MRI** brain - multiple inflammatory lesions

 spinal cord – myelitis C3-C5

- **CSF** leuco 88/3 protein 322 mg/l normal i.t.IgG

- **Serology** negative

- **EEG** bilateral slowing PO

- **Therapy** i.v acyclovir, methylprednisolone,diazepam

- **Outcome** : full recovery after 6 months
ADEM Joseph *2003

After 2 months = 3/2009
MRI brain and SC: lesions regression
Mild paraparesis
ADEM - Prognosis

- Better in children than in adults
- Gradual adjustment
- Full recovery is seen in 50-75% of cases after 1-6 months
- In 30% of cases lasting residual changes
 (mental retardation, focal deficit, epilepsy ..)
- Mortality 5 – 10%
- 20% later diagnosed with MS
Pediatric Multiple Sclerosis (MS)

Chronic inflammatory autoimmune disease

The myelin sheaths around the axons are damaged, leading to:

- demyelination
- axonal loss
- neurodegeneration
- CNS atrophy

Occurrence in young adults - average age approx. 30 years
Onset during childhood or adolescence is increasingly recognized
MS – Multifactorial Disease

- **Genetics** – polygenic inheritance
 The role of multiple genes in the pathogenesis
 The gene for APO E, osteopontin, olig1
 Predisposition HLA-DR2, DQ

- **Infections** – herpes viruses (EBV, HSV, HHV6)

- **Vaccination** is massive antigenic stimulation

- **Environmental factors - higher risk**
 geographical – in areas farther from the equator
 decreased vitamin D - less exposure to the sun
 severe stress
 smoking
MS Incidence

1.1 million patients in the world

In the Czech Republic

170 – 200 / 100 000 inhabitants
MS - Autoimmunology

Immune – mediated disorder
Targets of immune response - myelin sheaths (MBP + PLP)
Destruction of oligodendrocytes
T cells recognize myelin as foreign attack
 proliferation CD3+, CD8+ Tcells
Cytokine release IL1,2,12, IFNgama, TNF a,b
BBB becomes permeable
Formation of inflammatory lesions
Thinning or complete loss of myelin
Transsection of the neuron axons
Axonal loss - Schema

- Activated T cell
- Cytokines
- Chemokines
- MMPs
- Abs + complement
- T cell
- NO
- MMPs
- TNF-α
- CD8+ T cell and perforin
- Na⁺ channel up-regulation
- Disturbed axon-ganglia interaction
- Ca²⁺ influx
- Ca²⁺ channels
- Loss of trophic support
MS - Pathophysiology

- Demyelination lesion in MS
- The immune cells in plaque - scar – sclerae (sclerosis)
Neuroimmune Balance

- **Proinflammatory and neurotoxic factors**
 - Th1 cytokines
 - TNF
 - IL-1
 - Osteopontin
 - Leukotriens
 - MMP
 - NO, glutamate
 - Neurodestruction

- **Anti-inflammatory and neuroprotective factors**
 - Th2 cytokines
 - TGF
 - Neurotrophic factors:
 - BDNF, NT
 - some prostaglandins
 - Neuroprotection
MS - Clinical Manifestations

- In 1868 Jean-Martin Charcot described the Charcot’s triad
 nystagmus, intention tremor, scanning speech

- **Main symptoms:**
 - Sensory symptoms 46%
 - Motor - “ - 20%
 - Optic neuritis 17%
 - Brainstem 13%
 - Ataxia 14%
 - Bladder and bowel difficulties
 - Cognitive impairment, emotional lability, fatigue
 - Seizures (corticosubcortical lesions) 2-5%

- **EDSS** Expanded Disability Status Scale
MS - Clinical Courses

CIS an attack suggestive of demyelination does not fulfill the criteria for definite MS

Benign 20%
- low number of attacks, minimum disability
- EDSS under 3.0 at 15 years duration of illness

Relapsing remitting episodic periods of worsening 70%

Secondary progressive gradual progressive neurologic decline between acute attacks

Primary progressive 10% without remission after initial MS symptoms
2010 McDonald MRI Criteria

DIS can be demonstrated by one or more T2 lesion in at least 2 areas:

- Periventricular (PV)
- Juxtacortical (JC)
- Infratentorial (IT)
- Spinal cord (SC)

DIT can be demonstrated by:

1. A new T2 and/or Gd enhancing lesion(s) on follow-up MRI
2. Simultaneous presence of asymptomatic Gd enhancing and nonenhancing lesions at any time
MRI

OVOID lesions larger 6 mm
Typical localization: PV, JC, IT, SC
Hyperintense in T2W - inflammation, demyelination
Black holes in T1W - axonal loss

Mandatory application of gadolinium!

Reason to indicate: activity assessment process
What other tests?
Paraclinical Examinations: CSF, EP

- **CSF**: Lymphocytes - mononuclear cells, plasma cells
 - The count under 100/mm³
 - 2 OCB that are not in the serum (in 85% - 95% pts.)
 - Increased IgG index

- **Evoked potentials**: Slow conduction
 - Abnormal latency, amplitude, shape

 \[\text{VEP} > \text{MEP} > \text{SEP} \]

 (According to the clinical significance)
Pattern VEP

VEP: Pattern VEP 4ch

<table>
<thead>
<tr>
<th>Channel</th>
<th>ms/D</th>
<th>V/D</th>
<th>#Avg_R1/R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left (O3-Czsi)</td>
<td>30</td>
<td>10u</td>
<td>100/100</td>
</tr>
<tr>
<td>Right (O3-Czdax)</td>
<td>30</td>
<td>10u</td>
<td>100/100</td>
</tr>
<tr>
<td>Left (Oz-Czsi)</td>
<td>30</td>
<td>10u</td>
<td>100/100</td>
</tr>
<tr>
<td>Right (Oz-Czdax)</td>
<td>30</td>
<td>10u</td>
<td>100/100</td>
</tr>
<tr>
<td>Left (O4-Czsi)</td>
<td>30</td>
<td>10u</td>
<td>100/100</td>
</tr>
<tr>
<td>Right (O4-Czdax)</td>
<td>30</td>
<td>10u</td>
<td>100/100</td>
</tr>
<tr>
<td>Left (Pz-Czsi)</td>
<td>30</td>
<td>10u</td>
<td>100/100</td>
</tr>
<tr>
<td>Right (Pz-Czdax)</td>
<td>30</td>
<td>10u</td>
<td>100/100</td>
</tr>
</tbody>
</table>

1 D
EOAMS

Onset before 16 year

Approximately 5% from MS population 0,4 - 5,6%

Infantile – under 10 years of age: very rare 0,5%

Juvenile – over 10 years of age
MS Therapies

- You have to treat **early** and aggressive
 Early initiated long term therapy is safe and is related to better outcomes!

- **Steroids** – for symptomatic attacks – iv methylprednisolone 3-5 g

- **Disease-modifying treatments:**
 - Interferon beta-1a, interferon beta -1b
 - Glatiramer acetate
 - Natalizumab - a humanized monoclonal antibody
 - Fingolimod - since 2010 the first oral drug
 - Teriflunomide - since 2012 oral drug

DMD reduce the progression rate of the disease, but do not stop it.

- **Multidisciplinary approach** – symptomatic therapy
- **Neurorehabilitation**
Differences

POMS - Pediatric Onset MS
- Ratio female/male: 0.8
- Polysymptomatic onset
- Initial symptoms:
 - Brainstem, cerebellar
 - Seizures: 22%

AOMS - Adult Onset MS
- Ratio female/male: 2-3
 (Sex hormones have regulatory role)
- Monosymptomatic onset
- Sensory, motor
- Seizures: 5%
Course of EOEMS

- Frequent relapses, 40-60% have a relapse after 1st attack up to 1 year

- Mild benign form in 90% cases, only 3% PP
 - Less cumulative disability after 10 years of illness

- EDSS lower (4 - 4.5)

- The progression of disability is slower than in adults
 - The developing CNS has more plasticity to recover

- MRI - giant lesions, T1W black holes

- Atrophy of the brain develops slowly

- Cognitive difficulties present
MRI Brain Atrophy 1998-2004
Prognosis of EOMS

- **Unpredictable, the risk always!**
- **Worse prediction:**
 - High relapse rate in the first 2 years
 - Short interval between attacks
 - Residual disability in initial symptoms
 - Early entry into the secondary progression
 - Sphincter difficulties
 - Paraclinical activity: MRI with Gd enhancement
Case Report - Mike - disease onset at age 4

Family History: mother - thyreopathy

Personal History: obesity 50 kg

First symptoms: brainstem, nystagmus, vertigo, ataxia

MRI: multifocal lesions in the white matter, Gd enhancement in 1/04 progression – dissemination in time and in space

CSF: 29/3 pleocytosis, OCB 4

VEP: abnormal

MEP: patol.
Case Report - Mike - disease onset at age 4

Course: RR form
Aggressive start - 3 episodes during first 3 months

Dg: infantile MS

Therapy: corticosteroids, azathioprine, IVIG
 current treatment: Copaxone

EDSS: 2,0
Case Report – Michaela with IDDM and MS

Family History: negative

Personal History: IDDM from 8 years

First symptom: paresthesia and cramps PHK at 11 y.

MRI: multiple demyelination periventricular lesions
CSF: OCB 5
VEP: abnormal, prolonged latency P 100
CR - Michaela with IDDM and MS

Therapy: methotrexate, IVIG
Methylprednisolone pulses, insulin pump

Course: RR form

Dg: IDDM, juvenile MS

EDSS: 3.0 cerebellar syndrome
- sphincter difficulties
- left sided hemiparesa
Thank you for your attention

Pelican is a symbol of our faculty.......