Curriculum Reform in Medical Education: Does It Work?

Sarah Leupen, University of Maryland Baltimore County

Discipline-Based Or "Traditional" Curricula:

- Learning was viewed as a simple accumulation of knowledge
- ➤ An understanding of normal structure and function was viewed as a prerequisite for learning about abnormal structure and function

There was little deliberate instruction in the application of basic science material to clinical problems, particularly during the first years of medical school.

Swanson and Case, Advances in Health Sciences Education, 2:71-84, 1997.

Integrated or "Modern" Curricula:

- There is much greater emphasis on learning basic science material in the context of its clinical application, even in the first year of medical school
- The majority of North American medical schools now report the use of some problembased learning variant for at least a portion of curricular time, (e.g., case-based learning; learning in small groups)

Swanson and Case, Advances in Health Sciences Education, 2:71-84, 1997.

AMEE GUIDE

The integrated curriculum in medical education: AMEE Guide No. 96

DAVID G. BRAUER¹ & KRISTI J. FERGUSON² ¹Washington University School of Medicine, USA, ²University of Iowa, USA

2015 Review

Assessing integration

Perhaps the most discouraging commonality observed in the literature on integrated curricula is the scarcity of published long-term effectiveness of such efforts. Useful retrospective reviews are available but are often limited to opinions based on group consensus or surveys (Lowitt 2002; Davis & Harden 2003; Brunger & Duke 2012). Outcomes trials exist despite the inherent challenges in establishing a truly controlled trial of a curriculum and often show at least non-inferiority if not objective benefits for the learner in an integrated setting (Van der Veken et al. 2009; Hirsh et al. 2012).

Impact on knowledge acquisition of the transition from a conventional to an integrated contextual medical curriculum

Jos Van der Veken,¹ Martin Valcke,² Jan De Maeseneer,³ Lambert Schuwirth⁴ & Anselm Derese⁵

Table 3 Cross-sectional comparison of scores on the Dutch Inter-University Progress Test (PT) (percentage correct-minus-incorrect) for basic and clinical sciences in CMC and ICMC student samples studying at Ghent University from 1999 to 2006 (one-way ANOVA)

	CMC students sample	1	ICMC students sample		F11		
Curricular year	Mean PT score (SD)	Students, <i>n</i>	Mean PT score (SD)	Mean PT score (SD) Students, <i>n</i>		Cohen's d	
Basic sciences							
L	9.98 (8.07)	95	14.37 (9.16)	963	20.35 [†]	0.51	
3	20.13 (8.81)	107	31.45 (11.69)	720	92.83 [†]	1.09	
4	30.15 (11.83)	322	33.46 (11.70)	578	16.52*	0.28	
5	34.13 (11.29)	200	37.22 (13.66)	413	7.68*	0.25	
6	37.02 (12.61)	330	41.44 (12.63)	239	17.03 [†]	0.35	
* <i>P</i> < 0.01 [†] <i>P</i> < 0.001				45			
				40 -			
				35 -			
				30 -			
				25 -			
				20 -	Conventio	nal	
				15 -			
				10 -			
				5 -			

Medical Education 2009 43:704-713.

Table 3 Cross-sectional comparison of scores on the Dutch Inter-University Progress Test (PT) (percentage correct-minus-incorrect) for basic and clinical sciences in CMC and ICMC student samples studying at Ghent University from 1999 to 2006 (one-way ANOVA)

	CMC students sample	1	ICMC students sample	2		Effect size
Curricular year	Mean PT score (SD)	Students, <i>n</i>	Mean PT score (SD)	Students, <i>n</i>	F	Cohen's d
Clinical sciences)					
L	1.02 (4.11)	95	4.74 (5.03)	963	48.60 [†]	0.81
3	6.04 (4.33)	107	13.09 (7.01)	720	102.20 [†]	1.21
4	14.66 (7.07)	322	21.00 (8.17)	578	136.95 [†]	0.83
5	26.14 (9.95)	200	32.09 (10.57)	413	44.46 [†]	0.58
6	31.32 (9.95)	330	40.82 (10.77)	239	108.16 [†]	0.88

* *P* < 0.01

 $^{\dagger} P < 0.001$

Effect size based on Cohen's d: small effect (> 0.20); medium effect (> 0.50); large effect (> 0.80)

CMC = conventional medical curriculum; ICMC = integrated contextual medical curriculum; SD = standard deviation

Medical Education 2009 43:704-713.

Graduates from vertically integrated curricula

Marjo Wijnen-Meijer and Olle ten Cate, Center for Research and Development of Education, University Medical Center Utrecht, the Netherlands

Marieke van der Schaaf, Department of Education, Utrecht University, the Netherlands Sigrid Harendza, Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany

deviations) To what extent...

Table 1. Overall table of means (and standard

	To what extent	Utrecht	Hamburg
1.	are graduates prepared for the work at your department?	3.47 (0.76)	3.67 (0.72)
2.	have graduates enough biomedical knowledge?	3.12 (0.70)	2.97 (0.80)
3.	have graduates enough clinical knowledge?	3.36 (0.65)	3.31 (0.75)
4.	have graduates enough pathophysiological knowledge of diseases?	3.09 (0.88)	3.11 (0.88)
	Scale for knowledge (2–4)	3.19 (0.64)	3.28 (0.54)
5.	are graduates capable to work independently?**	3.64 (0.78)	3.00 (0.90)
6.	are graduates capable to solve medical problems?*	3.44 (0.71)	3.05 (0.86)
7.	are graduates capable to manage unfamiliar medical situations?**	3.35 (0.54)	2.64 (0.71)
8.	are graduates capable to prioritise their tasks?**	3.41 (0.61)	2.53 (0.77)
9.	are graduates capable to collaborate with other people?**	4.15 (0.62)	3.64 (0.80)
10.	are graduates capable to judge when they should consult their supervisors?*	3.97 (0.59)	3.50 (0.95)
11.	are graduates capable to reflect on their activities?*	3.72 (0.68)	3.25 (0.87)
12.	are graduates capable to behave professionally with regard to patients?	3.76 (0.61)	3.45 (1.06)
13.	are graduates capable to manage stressful situations?	3.38 (0.65)	3.25 (0.81)
	Scale for capability (5–13)**	3.65 (0.49)	3.17 (0.46)
*p <	• 0.05; **p < 0.01.		

ORIGINAL RESEARCH

Curricular Reform in Two Medical School Tracks and the Impact on USMLE Scores

Michele B. Lundy¹ · Cynthia A. Standley² · Anton H. Westveld^{3,4}

ORIGINAL RESEARCH

Curricular Reform in Two Medical School Tracks and the Impact on USMLE Scores

Michele B. Lundy¹ · Cynthia A. Standley² · Anton H. Westveld^{3,4}

ORIGINAL RESEARCH

Curricular Reform in Two Medical School Tracks and the Impact on USMLE Scores

Michele B. Lundy¹ · Cynthia A. Standley² · Anton H. Westveld^{3,4}

Med.Sci.Educ. DOI 10.1007/s40670-016-0368-y

The Strategic Impact of a Changing Curriculum and Learning Environment on Medical Students' Academic Performance

Pamela C. Williams, MD; Anna Cherrie Epps, PhD; Sametria McCammon, MSPH

 Table 13. NBME USMLE Step 1 and NBME USMLE Step 2 Clinical Knowledge Scores for the Control and

 Intervention Groups

_	Control GroupNBME USMLE Step 1NBME USMLE Step 273.783.79396.319.3% points below12.6% points belowIntervention Group				
	NBME USMLE Step 1	NBME USMLE Step 2			
Score	73.7	83.7			
National mean	93	96.3			
Difference from national mean	19.3% points below	USMLE Step 1NBME USMLE Step 273.783.79396.3points below12.6% points belowIntervention GroupUSMLE Step 1NBME USMLE Step 28588.79396.39396.3			
_	Intervention Group				
	NBME USMLE Step 1	NBME USMLE Step 2			
Score	85	88.7			
	03	96.3			
National mean	75	/0.0			

Journal of the National Medical Association 2011 v. 103:802-810

Pathways

Beginning in August 2015, Harvard Medical School launched an innovative new curriculum – *Pathways*. This bold revision of the MD curriculum incorporates pedagogical approaches that foster active learning and critical thinking; earlier clinical experience; and advanced clinical and student-tailored basic/population science experiences that will provide customized pathways for every student.

Introduction to the Profession (ITP)	Organ Systems Courses: Including relevant anatomy, patholog pharmacology, etc.
POM Practice of Medicine: Foundational communication, physical exam, clinical reasoning and presentation skills. Goal: 4-year longitudinal clinical skills curriculum.	Immunity in Defense and Disease (IDD): Derm, Rheum, Allergy/Immunology
Biochemistry, Cell Biology, Genetics, Developmental Biology, and	Homeostasis 1: CV, Resp, Heme
introduction to Anatomy, Histology, Pharmacology, Pathology, Immunology, Microbiology	Homeostasis 2: Renal, Gl, Endo, Repro
Essentials of the Profession: Evidence, Ethics, Policy, and Social Medicine Health Policy, Medical Ethics & Professionalism, Social Medicine, Clinical Epidemiology/Population Health	Mind, Brain, Behavior and Development (MBBD
Transition to the Principal Clinical Experience: Intensive ramp-up clinical skills; clinical anatomy; introduction to imaging; clinical epidemiology and medical ethics; BLS, mask fitting, occupational health screening, HIPAA, and standard precautions; life on wards, digital professionalism, and PCE orientation.	Advanced integrated science courses, Scholarly Project Scholarly Project, clinical electives, sul internship and student-as-teacher opportunities
Professional DevelopmentWeeks: Three one-week periods of assessment, feedback, self-reflection, advising to consolidate learning and generate individualized learning plans.	USMLE Step 1, Step 2CS & 2CK Step 2 CS & 2CK

Medical Education at Yale

1. Integration: Basic, clinical, and social sciences are integrated throughout all years of the curriculum.

- The design and implementation of the curriculum are interdisciplinary and interdepartmental.
- Basic scientists and clinicians plan and teach together to assure that the curriculum repeatedly
 emphasizes and demonstrates the importance of the basic sciences in understanding and practicing
 clinical medicine.
- Educators understand how their teaching fits into the goals and content of the overall curriculum and communicate this perspective to students.
- Residents and faculty model and reinforce the skills and professional attitudes we want our students to emulate.
- Students understand the structure of the curriculum and their professional responsibility within it.
- Students have early clinical experiences to provide inspiration and context for learning the scientific foundations of medicine.
- The curriculum design be flexible and provide opportunities as well as time for students to explore their interests and pursue inpidual goals.
- Students accept their responsibility to actively participate in the curriculum and recognize that
 certain activities require their presence and engagement in order for effective learning and
 meaningful assessment to take place. This becomes increasingly important as the curriculum
 continues to shift toward small groups that rely on interactive discussion and collaborative casebased learning.
- Assessment methods emphasize an ability to correlate and apply knowledge rather than recite information, and include multiple opportunities for direct observation by and feedback from faculty and other educators*. Students embrace the importance of feedback as a means of assuring they have acquired the knowledge, skills, and professional attributes to prepare them for residency and exceptional medical practice.

- Early clinical exposure in hospital and community settings
- A blend of lectures, case-based learning and practical work
- State of the art anatomy facilities including cadaveric prosections
- Inter-professional working with students of nursing, pharmacy and physiotherapy
- Integration of basic science and clinical learning throughout the course
- A substantial student choice programme to explore personal interests in more detail and to experience potential career options
- Completion of a research project of your choice
- An exciting opportunity to study abroad as part of our final year elective
- A final year that is constructed explicitly to prepare you for your first job as a foundation doctor

Curriculum or Pedagogy?

Emphasis of reform can be curricular, pedagogical, or both

Because of data on pedagogy (not curriculum), American medical schools can no longer be reaccredited if they use primarily lectures

Curriculum or Pedagogy?

Emphasis of reform can be curricular, pedagogical, or both

Because of data on pedagogy (not curriculum), American medical schools can no longer be reaccredited if they use primarily lectures

Pedagogical changes that have been shown to improve learning:

- Students use information in class to consider conceptual or realistic problems
- Students work in teams

Students receive frequent feedback about their understanding before the exams

Problem-Based Learning Outcomes: Ten Years of Experience at the University of Missouri—Columbia School of Medicine

Kimberly Hoffman, PhD, Michael Hosokawa, EdD, Robert Blake Jr., MD, Linda Headrick, MD, MS, and Gina Johnson

Academic Medicine, Vol. 81(7):617-625, 2006

Figure 2 Mean scores for Step 1 of the United States Medical Licensing Examination (USMLE) for graduating classes 1994–2006, University of Missouri—Columbia School of Medicine, and corresponding U.S. and Canadian scores. Scores for both groups are for first-time test takers. *Indicates p < .01 for difference between means.

Problem-Based Learning Outcomes: Ten Years of Experience at the University of Missouri—Columbia School of Medicine

Kimberly Hoffman, PhD, Michael Hosokawa, EdD, Robert Blake Jr., MD, Linda Headrick, MD, MS, and Gina Johnson

USMLE Step 2 (Clinical)

Academic Medicine, Vol. 81(7):617-625, 2006

Figure 3 Mean scores for Step 2 of the United States Medical Licensing Examination (USMLE) for graduating classes 1993–2005, University of Missouri—Columbia School of Medicine, and corresponding U.S. and Canadian scores. Scores for both groups are for first-time test takers. *Indicates p <. 01 for difference between means.

Effects of problem-based learning: a metaanalysis

Filip Dochy ^{a,b,*}, Mien Segers ^b, Piet Van den Bossche ^b, David Gijbels ^b

^a University of Leuven, Afdeling Didactiek, Vesaliusstraat 2, 3000 Leuven, Belgium ^b University of Maastricht, The Netherlands

Table 1 Main effects of PBL

Outcome ^b	Sign.+ ^c	Sign°	Studies N ^d	Average ES	Average ES	
				Unweighted	Weighted (CI 95%)	
Knowledge Skills	7 14	15 0ª	18 17	-0.776 +0.658	-0.223 (+/-0.058) +0.460 (+/-0.058)	379.6 (<i>p</i> =0.000) 7.1 (<i>p</i> =0.000)

^a Two-sided sign-test is significant at the 5% level.

^b All weighted effect sizes are statistically significant.

 $^{\rm c}$ +/- number of studies with a significance (at the 5% level) positive/negative finding.

^d the number of total nonindependent outcomes measured.

Assessing the effectiveness of problembased learning in physical diagnostics education in China: a meta-analysis

2016 Study

Figure 3: Forest plot for the effects of PBL or knowledge cores compared with the traditional teaching.

PBL				Control				Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
Xu 2013	70.4	2.3	40	71.2	5.4	40	7.6%	-0.19 [-0.63, 0.25]	-
Zuo 2011	83.7	10.4	32	82.4	10.7	210	7.7%	0.12 [-0.25, 0.49]	+
Wu 2012	62.81	7.78	60	61.15	7.87	60	7.8%	0.21 [-0.15, 0.57]	+
Mo 2011	59.7	6.43	54	58.35	4.55	52	7.7%	0.24 [-0.14, 0.62]	+
Guan 2007	47.31	6.82	48	45.26	7.63	46	7.7%	0.28 [-0.13, 0.69]	-
An 2012	87.2	9.1	30	83.2	8.9	30	7.4%	0.44 [-0.07, 0.95]	
Lai 2012	83	0.21	100	82	3.1	100	7.9%	0.45 [0.17, 0.73]	-
Liu 2007	79.86	8.31	93	73.19	11.29	95	7.9%	0.67 [0.38, 0.96]	+
Liu 2014	74.2	5	20	70.2	6.2	25	7.1%	0.69 [0.08, 1.30]	
Nie 2012	76.83	8.21	230	67.19	10.12	229	8.1%	1.04 [0.85, 1.24]	-
Hou 2012	36.92	5.4	60	30.75	6.3	60	7.7%	1.04 [0.66, 1.43]	-
Chen 2014	82.4	3.7	60	76.7	2.1	60	7.6%	1.88 [1.45, 2.31]	
Li 2007	85.7	2.42	130	76.68	3.65	122	7.8%	2.92 [2.57, 3.28]	-
Total (95% CI)			957			1129	100.0%	0.76 [0.33, 1.19]	◆
Heterogeneity: Tau ² =	0.59; C	hi² = 2	33.56,	df = 12 ((P < 0.0	0001);1	²= 95%		-4 -2 0 2 4
Test for overall effect:	Z= 3.44	(P = 0).0006)						Favours Control Favours PBL

Sci. Rep. 6, 36279; doi: 10.1038/srep36279 (2016).

Assessing the effectiveness of problembased learning in physical diagnostics education in China: a meta-analysis

2016 Study

Figure 4: Forest plot for the effects of PBL or skill scores compared with the traditional teaching.

8	PBL			Control				Std. Mean Difference	Std. Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl	
Liu 2007	95.95	3.83	93	95.42	3.15	95	10.3%	0.15 [-0.14, 0.44]	+	
Mo 2011	24.15	5.64	54	21.4	5.12	52	10.1%	0.51 [0.12, 0.89]	-	
Hou 2012	50.46	8.4	60	45.68	7.4	60	10.1%	0.60 [0.23, 0.97]	-	
An 2012	90.4	9.3	30	81.5	6.7	30	9.6%	1.08 [0.54, 1.63]	-	
Guan 2007	28.5	1.04	48	25.72	3.1	46	9.9%	1.20 [0.76, 1.64]	-	
Wu 2012	26.68	2.35	60	21.86	3.63	60	10.0%	1.57 [1.16, 1.98]	-	
Li 2007	17.66	1.78	130	13.87	2.03	122	10.3%	1.98 [1.68, 2.29]	-	
Nie 2012	85.85	3.82	230	78.42	3.32	229	10.4%	2.07 [1.85, 2.30]	-	
Xu 2013	86.7	6.2	40	73.2	4.6	40	9.5%	2.45 [1.86, 3.04]	-	
Chen 2014	88.5	4.9	60	75.3	3.6	60	9.7%	3.05 [2.52, 3.58]	-	
Total (95% CI)			805			794	100.0%	1.46 [0.89, 2.02]	•	
Heterogeneity: Tau ² :	= 0.79; C	hi² = 2	12.01,	df = 9 (F	< 0.0	0001);1	² = 96%			
Test for overall effect	: Z = 5.03	8 (P < (0.00001	1)		18			-4 -2 U Z 4 Favours Control Favours F	

The Impact of Team-Based Learning on Medical Students' Academic Performance

Paul G. Koles, MD, Adrienne Stolfi, MSPH, Nicole J. Borges, PhD, Stuart Nelson, PhD, and Dean X. Parmelee, MD

Table 3

Comparison of the Performance of 178 Second-Year Medical Students on Pathology-Based Exam Questions (PBQs), Boonshoft School of Medicine, 2003–2005*

				Se		
Group	o of PBQs	No. of questions	DI: Mean (SD)	Mean % (SD)	Range %	<i>P</i> value ⁺
All CC	Es					
TR	With TBL	243	0.20 (0.12)	83.6 (6.1)	64.0–96.1	<.00
TU	Without TBL	462	0.22 (0.13)	77.7 (6.9)	59.7–91.3	

Academic Medicine, Vol. 85, No. 11 / November 2010

The Impact of Team-Based Learning on Medical Students' Academic Performance

Paul G. Koles, MD, Adrienne Stolfi, MSPH, Nicole J. Borges, PhD, Stuart Nelson, PhD, and Dean X. Parmelee, MD

Table 4

Performance of Second-Year Medical Students in the Highest Academic Quartile (n = 45) Versus Those in the Lowest Academic Quartile (n = 45) on Pathology-Based Examination Questions (PBQs), Boonshoft School of Medicine, 2003–2005*

Academic quartile and	Score on a	l exams		Difference in scores ⁺				
group of PBQ	Mean % (SD)	Range %	Me	an % (SD)	Range %			
Highest quartile				$\langle \rangle$				
TR	89.3 (4.0)	80.6 to 96.1		3.8 (5.4) [‡]		-7.7 to 13.3		
TU	85.5 (3.2)	78.8 to 91.3						
Lowest quartile								
TR	77.5 (5.8)	64.0 to 86.8		7.9 (6.0) [‡]		-5.1 to 20.6		
TU	69.6 (4.5)	59.7 to 77.5						

* TBL, team-based learning; TR, TBL-related PBQ; TU, TBL-unrelated PBQ.

⁺ TR versus TU scores.

⁺ P = .001 for two-way ANOVA interaction comparing the difference in mean scores on TR and TU questions for highest- versus lowest-quartile students.

The effectiveness of team-based learning on learning outcomes in health professions education: BEME Guide No. 30

MIM FATMI, LISA HARTLING, TRACEY HILLIER, SANDRA CAMPBELL & ANNA E. OSWALD University of Alberta, Edmonton, Canada

		Та	able 5. Summary	of findings.		
			Findings:	Any significant di	fference	
Outcome	Intervention	Comparator	No statement	p > 0.05	p < 0.05	Study design and number of participants enrolled
Knowledge	TBL	CBGD SGL Mixed Active Learning		No difference	Favours TBL Favours TBL Favours TBL Favours TBL	RCT $(n = 83)$ NCC $(n = unclear)$ NRCT $(n = 112)$ NRCT $(n = 167)$ CC $(n = 64)$
		Independent Study Traditional Lecture	Favours TBL Favours TBL	No difference No difference	Favours TBL Favours TBL	PC $(n = 1417)$ NCC $(n = unclear)$ RC $(n = 186)$ NCC $(n = 280^*)$ NCC $(n = 306)$ NCC $(n = 143)$
Reaction	TBL	CBGD SGL	Favours TBL	No difference No difference No difference	Favours TBL Favours SGL	NCC $(n = 371)$ NCC $(n = unclear)$ PC $(n = 121)$ RCT $(n = 83)$ NRCT $(n = 112)$ NRCT $(n = 167)$
		Mixed Active Learning Traditional Lecture	Favours TBL Favours lecture	No difference	Favours TBL	CC $(n = 64)$ NCC $(n = unclear)$ NCC $(n = 280^*)$ NCC $(n = 306)$

Fatmi et al. Medical Teacher 2013: 35 (1608-1624)

ORIGINAL ARTICLE

What would happen to education if we take education evidence seriously?

C. P. M. van der Vleuten · E. W. Driessen

"We should forget about comparing curriculum X versus Y to see which is superior. Instead we should acquaint ourselves with evidence and theory from the educational sciences, perhaps even participate and contribute to the scholarly work. Then we should engage ourselves in creatively designing educational strategies that make optimized translations from theory to education practice. We should exchange our best practices and learn from each other."

1. Design your curriculum and pedagogy so that students are using the information. Any information "learned" without context is not deeply learned and quickly forgotten.

1. Design your curriculum and pedagogy so that students are <u>using</u> the information.

2. Use cooperative groups or teams; the evidence is overwhelming.

- 1. Design your curriculum and pedagogy so that students are <u>using</u> the information.
- 2. Use cooperative groups or teams
- 3. Provide frequent feedback to students (at least partly formative (not an exam)).

- 1. Design your curriculum and pedagogy so that students are <u>using</u> the information.
- 2. Use cooperative groups or teams
- 3. Provide frequent feedback to students (at least partly formative (not an exam)).

1. Design your curriculum and pedagogy so that students are <u>using</u> the information. Any information "learned" without context is not deeply learned and quickly forgotten.

- 2. Use cooperative groups or teams; the evidence is overwhelming.
- 3. Provide frequent feedback to students (at least partly formative (not an exam)).
- 4. Train and involve faculty: change the culture

ORIGINAL ARTICLE

What would happen to education if we take education evidence seriously?

C. P. M. van der Vleuten · E. W. Driessen

"The learning evidence on student learners equally applies to our teachers. Simply telling them to change will be the best recipe for disaster. We will need to involve them, allow them to experience working in different ways, having a change leader or manager who is entrusted, who coaches, who helps. By doing this well, teachers will also become engaged and this will fuel the change process."

Curriculum reform at Chinese medical schools: What have we learned?

LEI HUANG¹, LIMING CHENG¹, QIAOLING CAI², RUSSELL OLIVE KOSIK³, YUN HUANG², XUDONG ZHAO², GUO-TONG XU², TUNG-PING SU⁴, ALLEN WEN-HSIANG CHIU⁴ & ANGELA PEI-CHEN FAN⁴

	Table	95. Chi	ef difficulties	of institut	ting medical	curriculur	n reform.			
	Extremely difficult		Relatively	Relatively difficult		Hard to say		Almost no difficulty		culty
Items	Number of schools	Percent (%)	Number of schools	Percent (%)	Number of schools	Percent (%)	Number of schools	Percent (%)	Number of schools	Percent (%)
Obtaining financial support	0	0	10	40.0	2	8.0	12	48.0	1	4.0
Training and organizing faculty	1	4.0	12	48.0	1	4.0	10	40.0	1	4.0
Increasing interdisciplinary coordination	5	20.0	14	56.0	1	4.0	5	20.0	0	0.0
Changing the mindset of faculty accustomed to antiquated techniques	2	8.0	12	48.0	4	16.0	7	28.0	0	0
Adaptation by students	0	0	3	12.0	9	36.0	12	48.0	1	4.0
Integration of teaching content	2	8.0	9	36.0	2	8.0	12	48.0	0	0
Application of various instructional methods	1	4.0	4	16.0	4	16.0	16	64.0	0	0
Implementation of a formative evaluation system	0	0	9	36.0	7	28.0	9	36.0	0	0
Preparing lecture materials	1	4.0	6	24.0	8	32.0	10	40.0	0	0

Discussion: Medical curricular reform is still in its infancy in China. The republic's leading medical schools have engaged in various approaches to bring innovative teaching methods to their respective institutions. However, due to limited resources and the shackle \oint f traditional pedagogical beliefs among many faculty and administrators, progress has been significantly hindered. Despite these and other challenges, many medical schools report positive initial results from the reforms that they have enacted.

Medical Teacher 2014, 36:1043-1050

 Design your curriculum and pedagogy so that students are <u>using</u> the information.
 Use cooperative groups or teams
 Provide frequent feedback to students
 Train and involve faculty: change the culture
 Use existing expertise and models

Taylor & Francis health sciences

Pros and cons of vertical integration between clinical medicine and basic science within a problem-based undergraduate medical curriculum: examples and experiences from Linköping, Sweden

L.O. DAHLE¹, J. BRYNHILDSEN¹, M. BEHRBOHM FALLSBERG², I. RUNDQUIST³ & M. HAMMAR¹

Lessons learned about integrating a medical school curriculum: perceptions of students, faculty and curriculum leaders

Jessica H Muller,¹ Sharad Jain,² Helen Loeser^{3,4} & David M Irby^{2,5}

You are here

Education and Training

Educational expertise

Research in education

RESEARCH IN EDUCATION

The Center for Research and Development of Education conducts scientific research in the field – and for the purpose – of improving healthcare education.

Some major areas of research are:

- > Vertical integration of medical curriculum
- > Determinants for the careers of doctors in training
- > Competency-based medical education

1. Design your curriculum and pedagogy so that students are <u>using</u> the information.

2. Use cooperative groups or teams

3. Provide frequent feedback to students

4. Train and involve faculty: change the culture

5. Use existing expertise and models

6. Measure the results!

AMEE GUIDE

The integrated curriculum in medical education: AMEE Guide No. 96

DAVID G. BRAUER¹ & KRISTI J. FERGUSON² ¹Washington University School of Medicine, USA, ²University of Iowa, USA

> literature has suggested that many aspiring curricular innovations are failing the test of time due to a simple failure as early as the planning and development stage: many groups report goals and expectations for their new curriculum but few describe methods of evaluation for gathering objective data to evaluate whether these goals are met. We hypothesize that this could be due to a lack of understanding of available standards of evaluation. The large literature review by Kulasegaram et al. (2013) suggests that "... assessing how students use that basic science content in clinical reasoning or in the perform-

Measure the Results!

Use already validated tools: Progress Tests (especially Dutch), or established tests of clinical reasoning or other skills

Appendix 2

Examples of Questions and Answers on a Clinical Data Interpretation Test Administered to 2,394 Medical Students With Zero, One, Two, or Three Years of Training at Five Schools, 2008

Skin Lesions

Clinical Vignette: A 58-year-old female presents with a chief complaint of a skin rash.

Item number	If you were thinking of: Drug eruption	And then the patient reports or you find on clinical or laboratory examination: Recent changes in blood pressure medication	This diagnostic hypothesis becomes:				Correct answer	
			A	В	С	D	E	D
135	Urticaria	Transient erythematous patches	Α	В	С	D	E	E
136	Herpes zoster	Asymptomatic blistering rash on chest	А	В	С	D	E	A

A = the hypothesis is almost eliminated, B = the hypothesis becomes less probable, C = the information has virtually no effect on the hypothesis, D = the hypothesis becomes more probable, E = the hypothesis is almost certainly correct.

THE CARNEGIE FOUNDATIO FOR THE ADVANCEMENT OF TEACHING PREPARATION FOR THE PROFESSIONS

EDUCATING PHYSICIANS

A Call for Reform of Medical School and Residency

Molly Cooke David M. Irby Bridget C. O'Brien

agent ighted Materia

Resources for Moving Forward

A Six-Step Approach

IRD EDITION

for Medical Education

Edited by Patricia A. Thomas, MD, David E. Kern, MD, MPH, Mark T. Hughes, MD, MA, and Belinda Y. Chen, MD

Copyrighted Material

Understanding Medical Education

SECOND EDITION

EDITED BY Tim Swanwick

